HALL-A Upgrade

- Introduction
- MAD spectrometer
- Background simulation
- Detector system
- Infrastructure
- Physics examples
- Summary

PAC on 12 GeV January 17-22, 2003

> Kees de Jager JEFFERSON LABORATORY

Introduction

- Initial design of Hall A upgrade focused on
 - Nucleon structure functions in valence region $(x \ge 0.5)$

$$A_1, g_2, F_2^n/F_2^p, ...$$

- Leading to general requirements
 - ✓ High luminosity (≥ 10³⁸ cm⁻² s⁻¹)
 - ✓ Large acceptance in momentum and angle
 - ✓ Medium resolution ($\delta p/p \approx 10^{-3}$)
 - ✓ Intermediate excitation ($p_{max} \approx 6-7 \text{ GeV/c}$)
- Suitable candidate combined-function warm-bore SC magnets

Kinematic Coverage

Design of MAD

- Configuration to be optimized
 - \checkmark nested (cos θ ,cos 2θ) coils
 - √ warm bore and yoke with 120 cm ID
- · Resulted in 3 T dipole with 4.5 T quadrupole gradient
- · Elliptical shape of yoke for closer approach to beam line

MAD conductor critical current and coil load lines

Mechanical Elements

MAD Infrastructure

- Background simulation (see later) require no target-detector line-of-sight
 - ✓ Increase deflection in second magnet from 10° to 22°
- Peak field in bore -1 to 4 T in coils -2 to 5 T, acceptable forces
- Very stable cryogenics with
 - ✓ a critical temperature ≥ 7 K
 - \checkmark α between 0.15 and 0.72, implying quench delayed until LHe evaporated
- Stored energy 15 and 25 MJ
- Four independent power supplies
- Total weight 2 * 250 (magnet) + 500 (shield house) ton ≈ 1000 ton
- Support requires angular and radial motion
 - ✓ no pivot mount (autocollimated laser for alignment)
 - ✓ 90° steerable wheels
- Three vacuum systems
 - ✓ cryosystem
 - ✓ spectrometer helium bag
 - √ gas Cerenkov

Optics Simulation

Ingredients:

- TOSCA produced field maps
- SNAKE for particle transport
- Fit transfer functions

Results shown for three cases

- No measurement error: understanding of optics with 200 μ m beam spot
- Standard errors: $\sigma_x = \sigma_y = 100 \ \mu m$ and $\sigma_\theta = \sigma_\phi = 0.5 \ mrad$
- 0.5 * standard errors

MCEEP and SIMC available for experiment simulation

Predicted Optical Performance

MAD Performance Summary

35° <-> (linear interpolation) <-> 12° Spectrometer angle acceptance resolution(σ) acceptance Angular 28 msr 6 msr horizontal + 35 mrad + 23 mrad 1.0 mrad vertical + 198 mrad 2.0 mrad + 68 mrad Momentum + 15 % 0.1 % ± 6 cm @ 90° Target coordinate 0.26 cm

Ingredients

- EM interactions + Mott
- SNAKE field maps
- MAD configuration with
 - Target 15 cm LH2 with 180 μ m thick Al window
 - Scattering chamber with 0.5 mm thick Al window
 - 2 m air
 - 100 μm plastic window
 - 5 m He

Conclusions

- Increase deflection by second magnet to 22° to avoid line-of-sight
- Place collimators at
 - target chamber, entrance of MAD1 and centre of MAD2
- At 25° with 50 μA on 15 cm LH2 100 MHz photons with 0.7 MeV average energy

Basic Detector Package

Detector introduction

MAD Single Rates (KHz)

 $E_{i} = 11 \text{ GeV}$ 70 uA, 15 cm LH2 target, L=3*10³⁸ s⁻¹cm⁻²

P (GeV/c)	theta=15 degree				25 degree				35 degree			
	e	pi-	pi+	p	e	pi-	pi+	p	e	pi-	pi+	p
1.5	1	780	830	360	500	290	300	290	0.1	21	120	330
3	3	90	90	170	0.4	5	100	270	0.02	0.04	130	270
4.5	4	9	70	170	0.1	0.03	30	280				

Main concerns
High rate of low-energy photons
Pion suppression

Trigger Scintillators

Three trigger planes S0, S1 and S2(V+H)

√S0/S1 before/after driftchamber package

0.5 m * 2 m * 0.5 cm with 1 cm overlap

√52 two orthogonal planes just before calorimeter

0.6 m * 2.5 m * 5 cm

- ✓ Each plane segmented in 16 paddles, read out at both ends
- Main trigger formed by S1+S2
 - √ Timing determined by S2 (s < 150 ps)
 </p>
 - √ S0 to determine trigger efficiency
- Discrimator set to reduce soft photon background
 - √50 kHz/paddle in S0 and S1, 100 Hz in S2

Wire Chambers

- Field wires
- Sense wires
- Two drift chambers 1 m apart with standard MWPC in between
- Drift chambers
 - \checkmark 0.6 m * 2.5 m 3 groups (u,v,x) each of four planes
 - ✓ Requiring 2 out of 4 planes yields very high efficiency
 - $\sqrt{75} \, \mu \text{m}$ resolution, 3 mm between sense wires
 - ✓ Dead time ~ 300 ns/cm/wire, negligible effect of 100 MHz soft photons
- MWPC for track selection
 - √3 mm wire distance

Gas Cerenkov

EM Calorimeter

- Main purpose pion rejection
- 3.2 m * 1 m lead(2.2 mm)-plastic(10 mm) sandwich
- Arranged in 10 cm * 100 cm strips, 22 X0 deep
- Every 5 even/odd plastic strips read out on alternate sides
- Energy resolution ~ 0.1 /√E
- Pion suppression e/π ~100

Data Acquisition

- Combination VME/NIM/CAMAC
- Flash ADC's and pipeline TDC's
- Upgrade HRS from Fastbus to VME

Hadron Extension

Particle Identification

- Shorten Gas Cerenkov to 1 m
- Install two aerogel Cerenkovs with
 ✓ n = 1.008 and 1.030
- 0.6 m * 2.5 m * 15 cm
- Magnetic shield either complete box or individual PMT's
- Good identification over full momentum range

Index	p _π (GeV/c)	p _K (GeV/c)	p _p (GeV/c)
1.030	0.58	2.06	3.92
1.008	1.11	3.93	7.46
1.0014	2.61	9.24	17.6

Particle Identification (cont.)

Focal Plane Polarimeter

- Double CH2 analyzer
 - ✓ Each 2 m * 3.5 m * 0.5 m (~% ton!)
- Tracking 2.5 m * 4 m
 - √ 4 multilayer straw chambers
 - ✓ 2 cm drift cel
- Use aerogel for π^+ rejection

Overview of MAD and HRS

Calorimeter

- Calorimeter on floor successful for photon/electron detection in coincidence experiments (e,e'pγ or e,e'X)
- Existing A/C calorimeter
 1700 lead-glass blocks 4 * 4 * 40 cm³
- Improved version
 - ✓ Use PbF2
 - Higher density -> better energy resolution
 - Higher refractive index -> lower e⁻ threshold
 - Enhanced UV transmission
 - Lower critical energy -> less e⁺e⁻ pairs
 - √ 1296 elements 26 * 26 * 200 mm³

Beam Line

- Beam emittance deteriorates factor 2 (longitudinal) to 10 (transverse)
- Little effect on quality of data, no need for significant modifications
- Arc dipoles modified from C- to H-yoke
- Energy measurement
 - ✓ ARC measurement requires remapping of all dipoles
 - ✓ EP instrument only useable up to 6 GeV
 - ✓ Beam polarimeters
 - Møller reduce dipole bend angle from 11° to 7° add quadrupole
 - Compton lift beam line by 8 cm

Research Program

Experimental Requirements for MAD

No.	Exp's	Pmax	Angle	Acc(angle)	Acc(mom)	Res(mom)	Res(ang)	Luminos-	e or h?
		(GeV/c)	(degrees)	(msr)	(%)	(%)	H, V(mr)	ity (10^37)	
1	d/u (3H/3He)*	6	15-30	15-30	30	0.3	1-3	10	e
2	A1n,g1n	6-7	15-30	15-30	30	0.3	2-3	0.1	e
3	g2n	6	15-30	15-30	30	0.3	2-3	0.1	e
4	A1p,g1p	6-7	15-30	15-30	30	0.3	2-3	0.01	e
5	spin duality	6-7	12-25	12-25	30	0.3	2-3	0.1	e
6	g1 at high E	6-7	12	12	30	0.3	1-3	0.1	e
7	DIS-Parity	6-7	12-15	12-15	30	0.3	1-3	100	e
8	semi-pi+/pi-	6	15-25	15-25	30	0.3	2-3	5	e
9	d_bar/u_bar	6	15-25	15-25	30	0.3	2-3	40	e
10	delta_u, d, s	6	15-25	15-25	30	0.3	2-3	0.1	e
11	transversity	6	15-38	15-30	30	0.3	2-3	0.1	e
12	pi struc. fun.	3	15-22	15-25	30	0.3	2-3	0.1	e
13	charm	6-7	12-15	12-15	30	0.3	1-3	40	e
14	hadronization	6	12-30	12-30	30	0.3	2-3	40	e
15	x>1	7	12-60	12-30	30	0.2	1-3	40	e
16	Gen	6	15-20	15-20	30	0.3	2-3	0.1	e
17	Gep/Gmp	7-8*	15-35	15-30	30	0.3	2-3	40	p, FPP
16	CT(e,e'p)	7-8*	15-35	15-30	30	0.3	2-3	40	р
17	CT with FPP	7	15-40	15-30	30	0.3	2-3	10	p, FPP
18	CT in pion prod	6	12-30	12-30	30	0.3	2-3	20	pi
19	pi+- photoprod	6	12-30	12-30	30	0.3	2-3	20	pi
20	pi0 photoprod	7	12-90	12-30	30	0.3	2-3	20	p, FPP
21	KLambda	6	12-90	12-30	30	0.3	2-3	20	р
22	gamma-d	4	20-40	20-30	30	0.3	2-3	20	p, FPP

Neutron (Proton) Spin Structure A1

Neutron (Proton) Spin Structure g2

Few-Body Systems

Summary

- MAD design has met all specifications Large acceptance
 - √ angle 30 msr
 - ✓ momentum 30 %

Medium resolution

- ✓ angle few mrad
- ✓ momentum 10⁻³
- MAD with HRS and ECAL provides versatile and powerful instrumentation for large variety of experiments

